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Abstract— In recent years, a novel mathematical framework 
for analyzing and designing multistatic radar systems has been 
proposed. It was argued through numerous simulation examples 
that multistatic radar system performances can be significantly 
improved by shaping the multistatic ambiguity function. Based 
on this framework, rules for waveform selection, sensor 
positioning and adequate weighting of different receivers have 
been developed. In this work, we present multistatic 
measurements obtained in a controlled laboratory environment 
to support some of these recent findings and conclusions. The 
experimental setup consists of a Lab-VoltTM radar system 
operating at X-band, Tektronix arbitrary waveform generator 
and Tektronix digital oscilloscope. Multistatic point target radar 
measurements for different system configurations are analyzed.   
 

I. INTRODUCTION 

The ambiguity function is a widely used tool for the 
analysis of radar systems. In recent years there have been 
considerable efforts to formulate the ambiguity function for 
bistatic and multistatic radar systems. In [1], the authors 
developed the ambiguity function for bistatic radar systems. 
This work was extended in [2] to the case of multistatic radar 
systems. In [3-6], the multistatic ambiguity function was used 
for assessing waveform selection, sensor positioning and 
coherent signal processing strategies. It was demonstrated 
through simulations that multistatic radar system 
performances can be improved by adequately shaping the 
multistatic ambiguity function. 

In this work, we try to substantiate some of the findings 
and conclusions presented in the above mentioned papers. To 
accomplish this goal we collect and analyze multistatic 
measurements obtained in a controlled laboratory 
environment. The experimental setup is designed to replicate 
the system assumptions made in the previous simulations. The 
paper is organized as follows. In Section II, we briefly outline 
the basic mathematical concepts behind the multistatic 
ambiguity function. In Section III we review some simulation 
examples used to illustrate the significance of the multistatic 
ambiguity function. Experimental setup used for collecting the 
multistatic measurements is described in Section IV. In 
Section V, we analyze the obtained measurements and 

investigate how they relate to the simulation results. Finally, in 
Section VI we provide concluding remarks. 

II. MULTISTATIC AMBIGUITY FUNCTION 

We consider a single transmitter multiple receiver radar 
system and assume that a coherent processing interval consists 
of a single pulse ( )s t  given as: 
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where Re{}⋅  denotes the real part operator, ( )f t%  is the 
complex envelope of the transmitted pulse, E  and dT  are the 
energy and duration of the pulse, respectively, and 2c cfω π=  
is the carrier frequency.  

Let the complex envelope of the ith receiver input 
( )1, 2,...,i N=  be denoted by ( )ir t% .  According to whether a 
target is absent (Ho) or present (H1), the two hypotheses are 
presented as  
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where ia%  is a complex gain which accounts for propagation 
and scattering effects along the ith path between the 
transmitter, target and the ith receiver.  aiτ  and Daiω  denote 
the actual total delay and Doppler shift experienced by the 
transmitted signal along the ith path, and ( )in t%  denotes the 
complex envelope of the additive noise present at the ith 
receiver input.  

Assuming additionally that the envelopes ( )in t%  are 
complex Gaussian random processes with zero-mean and 
white in quadrature components with power spectral densities 

0 2iN , the signal at the output of the matched filter of the ith 
receiver becomes 
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where ( )*f t%  denotes complex conjugate of ( )f t% , and Hiτ  

and DHiω  denote the hypothetical total delay and Doppler 
shift experienced by the transmitted signal assuming a target 
present in the radar cell under test.  

Signals id , 1, 2,...,i N= , represent local statistics 
obtained at each receiver. The ambiguity function for the ith 
receiver becomes [2]   
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The global ambiguity function is then given as a weighted 
sum of the bistatic ambiguity functions:  
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The ambiguity function ( ), , ,H a DH DaΘ τ τ ω ω  for a 
given target (fixed aτ  and Daω ) is a 2N - dimensional 
function.  Since we are ultimately interested in target position 
(defined by its coordinates, e.g. x , y  and z ) and its velocity 
vector (defined by its components, e.g. x& , y&  and z& )  it is 
more practical to express the ambiguity function as a function 
of these quantities. The highly nonlinear nature of mapping 
between the delays and Doppler shifts on one hand, and target 
coordinates and its velocity vector components on the other, 
makes the analysis of multistatic radar systems especially 
challenging and the system geometry very important. It 
should be pointed out that this nonlinearity does not exist in 
monostatic radar systems.  

Thus, to simplify the analysis, but more importantly, to 
account for the system geometry when formulating the 
multistatic ambiguity function, we align all receivers with 
respect to the target position and velocity. In addition, in 
order to visualize the problem we usually select two fixed 
dimensions to present the multistatic ambiguity function. In 
this paper, we will consider 2-D system geometries and 

concentrate on target position only. Thus, the multistatic 
ambiguity function will be presented as a function of  x  and 
y  coordinates only. 

III. SIMULATION RESULTS 

We will now illustrate the multistatic ambiguity function 
using the example borrowed from [5]. Let us consider a 2-D 
multistatic system configuration with 4 receivers and one 
transmitter as shown in Figure 1. 

 
Figure 1. Multistatic system geometry 

Without the loss of generality, the target is placed at the 
origin (labeled Tgt), four receivers are shown as Ri, 

1, 2,3, 4i =  and the transmitter is shown as T. The distance 
between the target and all the sensors (transmitter and 
receivers) is assumed to be 10 km. 

Assume that we are interrogating a relatively small area 
(100m x 100m) as compared to distances between the sensors 
and that range resolution is our primary concern. In this 
example the transmitted waveform is a single pulse Barker 13 
waveform with the pulse width of 44 ns. We will also assume 
that all receivers are weighted equally (a reasonable 
assumption since all distances are the same). The multistatic 
ambiguity function (presented in x-y plane) is shown in Figure 
2, while the corresponding 3-dB main lobe contour plot is 
shown in Figure 3.  

 
Figure 2. Multistatic ambiguity function 

 

978-1-4244-5813-4/10/$26.00 ©2010 IEEE 000267



 
Figure 3. Multistatic ambiguity function (3-dB contour plot) 

The area of the 3-dB main lobe contour in this example is 
0.7886 m2. Note that a 3-dB area of the multistatic ambiguity 
function is closely related to the resolution of the 
corresponding multistatic radar system.  

Let us now consider a scenario where positions of all 
receivers are fixed, while the position of the transmitter can 
change as long as the distance from the origin remains the 
same (10 km). In particular, let us move the transmitter along 
the arc shown in Figure 4.  
 

 
 

Figure 4. Multistatic system geometry (moving transmitter) 
 

Figure 5 shows the 3-dB main lobe contour area results 
for different transmitter positions (angle α was varied 
between 0 and π/2 (see Figure 4)). As can be seen in Figure 5, 
in order to achieve the best range resolution, the transmitter 
should be placed right in the middle between receivers R1 and 
R2. As the transmitter moves closer to one of the receivers, 
the range resolution deteriorates (note that 0.05α π= in 
Figure 3). This is a somewhat expected result that we will try 
to verify and substantiate with real measurements. 
 

 
 

Figure 5. 3-dB main lobe area results (moving transmitter) 
 

IV. EXPERIMENTAL SETUP 

Our measurement equipment consists of a Lab-VoltTM 
radar system operating at X-band, Tektronix arbitrary 
waveform generator (AWG) and a Tektronix digital 
oscilloscope. The Lab-VoltTM is described in detail in [7], and 
provides many of the basic components needed for timing and 
synchronization of the Single Input Multiple Output (SIMO) 
system that is of interest here. Tektronix arbitrary waveform 
generator creates the phase coded baseband signals, the Lab-
Volt X-band source, antennas, synchronizer, and target 
positioner are combined with additional mixers and filters to 
form the radar front end, and the Tektronix digital 
oscilloscope serves as the digital receiver.  The complete 
system is presented in a companion paper [8]. 

The high-speed sampling capability allows data capture at 
radio frequencies (RF) and baseband conversion is performed 
digitally in MATLAB. As the bistatic receiver is repositioned 
around the circle, the transmit waveform is rebroadcast so that 
subsequent measurements can be assembled as if N receivers 
were simultaneously operated. This approach essentially 
simulates a single transmitter multiple receiver operation and 
the data can be used to support various SIMO signal 
processing algorithms. 

The measurement equipment is shown in Figure 6. To meet 
our goal of closely matching the simulation assumptions 
made in [5] the system is configured as shown in Figure 7. At 
the center of the circle in Fig. 7 is a point target (1-in metal 
sphere). The primary receiver is co-located with the 
transmitter in a monostatic configuration and the remaining 
receivers are positioned at multiple locations around the 
circle. As depicted in Fig. 7, the particular set up only 
supports two simultaneously operated receive channels. 
However, by keeping the transmit path and waveform exactly 
the same (a distinct advantage of using the AWG), we can 
reposition the secondary receiver and repeat the experiment 
to obtain N different receive locations. This process simulates 
N simultaneously operated receivers and serves as a way to 
scale the measurement for the laboratory environment that 
may otherwise suffer mutual coupling effects between the 
various receive antennas when operated in close proximity. 
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Figure 6. Measurement equipment 

 
Figure 7. Laboratory setup 

 
V. MEASUREMENT RESULTS 

Our measured data were obtained using a carrier 
frequency of approximately 10cf = GHz, 4-element Barker 
code transmitting waveform (phase sequence: 0, 0, 0, π, with 
0.5 ns chip width) and measurement radius 1.02oR = m (see 
Fig. 7).  

In order to relate our measurements with the simulation 
results presented in Section III let us first consider the 
simulated configuration with four receivers and the 
transmitter located at 4α π=  (see Figure 4). Recall that this 
was the configuration that had the best resolution as measured 
by the 3-dB main lobe contour area. In order to create the 
same configuration we positioned four bistatic receivers at 

1 4φ π= , 2 7 4φ π= , 3 5 4φ π=  and 4 3 4φ π=  (see Figure 
7). Let us process the signal measured at the first receiver 
( 1 4φ π= ) and converted to baseband. The corresponding 
output of the matched filter correlator is shown in Figure 8. 
Note that this signal represents the local statistics as defined 
by Eq. (3) and integrated over 100 pulses. 
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Figure 8. Output of the matched filter correlator 

Similar results are obtained for the remaining three 
receivers. Next we align and combine the obtained results to 
create the corresponding data cube plots that should represent 
the shape of the multistatic ambiguity function. We assume 
that the interrogation area is a square 2m x 2m with the target 
placed at the origin and oriented the same way as the 
laboratory setup shown in Figure 7. Figure 9 shows the 
corresponding normalized bistatic data cube (Receiver 1) 
where global statistics is formed as 2

1D d= . 

 
Figure 9. Normalized bistatic data cube 

Figure 10 shows the corresponding normalized multistatic 
data cube where the global statistic is formed as: 

2 2 2 2
1 1 2 2 3 3 4 4D w d w d w d w d= + + +           (6) 

where 1w , 2w , 3w  and 4w  are the weights associated with 
each receiver.  

In this example signals from all receivers are first 
normalized and then weighted equally. This was done in 
order to relate obtained measurements with the simulation 
results where potentially different signal to noise levels were 
not modeled. Thus, we normalized our different bistatic 
measurements so that they have the same energy. This, 
however, might not be the case in practice as different bistatic 
receivers might capture different levels of returned energy 
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even in the case of an ideal spherical target. As a result, both 
the probability of detection and resolution might be affected. 
This issue will be studied in future work.  

 
Figure 10. Normalized multistatic data cube (first configuration) 

Let us comment on the shape of the normalized 
multistatic data cube shown in Figure 10. First we observe the 
ability of the multistatic system to localize the target in space 
as was already suggested in our simulations (see Figure 2). In 
our comparisons with simulations we are primarily interested 
in the main lobe 3-dB area. For the measured system 
configuration it equals 0.0712 m2 as can be computed form 
the date cube. One can also notice certain patterns outside the 
main lobe that we do not see in our previous simulations (see, 
for example, Figure 2). This is due to the relative size of the 
interrogation area. While in the case of our simulations, 
distances among the transmitter, receivers and the target were 
much greater (~ 10 km) than the size of the interrogation area 
(100m x 100m), in the case of measurements they were at the 
same order of magnitude.  

 
Figure 11. Normalized multistatic data cube (second configuration) 

 

Next we changed the multistatic system configuration and 
positioned the four bistatic receivers at 1 12φ π= , 

2 19 12φ π= , 3 13 12φ π=  and 4 7 12φ π= . This is the same 
configuration as the one in Figure 4 for the transmitter 
located at 12α π= . The corresponding normalized 
multistatic data cube is shown in Figure 11. This time the 
measured main lobe 3-dB area equals 0.0796 m2. Thus, we 
experienced degradation in resolution which is consistent 
with our simulation results (see Figure 5). 

VI. CONCLUSIONS 

In this paper we presented multistatic measurements 
obtained in a controlled laboratory environment. Different 
multistatic system geometries were considered. We were able 
to verify the theoretical findings regarding the sensor 
placement that were based on the multistatic ambiguity 
function. The measured main lobe 3-dB area results closely 
match the results obtained in simulations (speaking in relative 
terms since the waveform used and relative distances were 
different). Future work is needed to investigate in 
measurements the role of waveform selection and weighting 
of different receivers play in multistatic radar systems and 
compare results with the theoretical findings. 

 

The views expressed in this article are those of the authors 
and do not reflect the official policy or position of the United 
States and Royal Australian Air Forces, the respective 
Departments of Defense, or the U.S. and Australian 
Governments. 
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